Worksheet for 2021-09-22

Conceptual questions

Question 1. Suppose f(x, y) is a function of two variables with $\nabla f(2,5) = \langle 4,0 \rangle$. How many unit vectors **u** are there such that $D_{\mathbf{u}}f(2,5)$ is -4? What about -3? 0? 5?

Question 2. Suppose $\nabla f(a, b) = 0$. In the second derivative test as written on page 961 in the textbook, they say "if D(a, b) > 0 and $f_{xx}(a, b) > 0$, then f(a, b) is a local minimum."

Is it significant that we look at f_{xx} rather than f_{yy} ?

Computations

Problem 1. Consider a point P = (a, b, c) on the surface *S* defined by xyz = 6. The tangent plane *H* at this point meets the coordinate axes at the points (A, 0, 0), (0, B, 0), (0, 0, C). In other words, *A*, *B*, *C* are the *x*, *y*, *z*-intercepts of *H*, respectively.

- (a) Compute each of *A*, *B*, *C* in terms of *a*, *b*, *c* only.
- (b) Show that their product *ABC* is independent of *a*, *b*, *c*. What is it equal to?