Worksheet for 2021-09-22

Conceptual questions

Question 1. Suppose $f(x, y)$ is a function of two variables with $\nabla f(2,5)=\langle 4,0\rangle$. How many unit vectors \mathbf{u} are there such that $D_{\mathbf{u}} f(2,5)$ is -4 ? What about -3 ? 0 ? 5 ?

Question 2. Suppose $\nabla f(a, b)=0$. In the second derivative test as written on page 961 in the textbook, they say "if $D(a, b)>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum."

Is it significant that we look at $f_{x x}$ rather than $f_{y y}$?

Computations

Problem 1. Consider a point $P=(a, b, c)$ on the surface S defined by $x y z=6$. The tangent plane H at this point meets the coordinate axes at the points $(A, 0,0),(0, B, 0),(0,0, C)$. In other words, A, B, C are the x, y, z-intercepts of H, respectively.
(a) Compute each of A, B, C in terms of a, b, c only.
(b) Show that their product $A B C$ is independent of a, b, c. What is it equal to?

